
Introduction to JVM
Architecture
Learn about the architecture of the Java Virtual Machine
(JVM)

Get started



Overview

This course provides an introduction to the architecture of the Java Virtual

Machine (JVM). You will learn about the various components of the JVM and how

they work together to execute Java programs. By understanding the JVM

architecture, you will be able to write more efficient and optimized Java code.



01 Overview of JVM Architecture

Overview of JVM
Architecture
Introduction

The Java Virtual Machine (JVM) is an integral part of the Java platform, providing

an execution environment for Java applications. It is responsible for running

compiled Java bytecode, translating it into machine-specific instructions that can

be executed by the underlying system. Understanding the architecture of the JVM

is essential for Java developers as it enables them to write efficient and portable

code. In this topic, we will delve into the details of the JVM architecture.

Class Loader Subsystem

One of the key components of the JVM architecture is the Class Loader

subsystem. It is responsible for loading classes and interfaces during the runtime

Overview of JVM
Architecture



of a Java program. The Class Loader subsystem consists of three distinct

components:

�� Bootstrap Class Loader: This is the first component in the Class Loader subsystem and

is responsible for loading core Java classes from the bootstrap classpath. These classes

are crucial for initializing the JVM.

�� Extension Class Loader: The extension class loader is responsible for loading classes

from the extension classpath. It loads classes that provide additional functionality to the

core Java platform.

�� Application Class Loader: Also known as the system class loader, it loads classes from

the application classpath, which includes user-defined classes and libraries.

Runtime Data Areas

The JVM architecture includes several runtime data areas that are used during the

execution of a Java program. These data areas store the necessary information

for the JVM to execute bytecode efficiently. The main runtime data areas are:

�� Method Area: The method area stores class-level data shared across all threads,

including the bytecode itself, constant pool, field and method data, and runtime constant

pool.

�� Heap Area: The heap area is where objects are allocated at runtime. It is divided into

multiple generations (young, old, and permanent) to optimize garbage collection.

�� Stack Area: Each thread of execution in a Java program has its own stack, which stores

method-specific data, including local variables and method invocations. The stack is

organized in frames that correspond to individual method calls.

�� PC Registers: The program counter (PC) registers store the address of the current

instruction being executed by a thread. Each thread has its own PC register.

�� Native Method Stacks: The native method stack is used for executing native (non-Java)

code. It is distinct from the Java stack and contains information about native methods.



Execution Engine

The execution engine is responsible for executing the instructions of Java

bytecode. It consists of two components:

�� Interpreter: The interpreter reads and interprets bytecode instructions one by one,

executing them directly. While this approach is straightforward, it can be slower

compared to other execution modes.

�� Just-In-Time (JIT) Compiler: The JIT compiler dynamically translates bytecode into

native machine code, optimizing it for the underlying hardware. This approach improves

execution speed by reducing interpretation overhead.

Garbage Collection

Memory management is a crucial aspect of any programming language, and the

JVM architecture includes a garbage collector for automatic memory

management. The garbage collector, or GC, monitors the heap area and identifies

objects that are no longer in use. It reclaims the memory occupied by these

objects, freeing it up for future allocation.

Conclusion

In this topic, we explored the architecture of the JVM, focusing on its components

and runtime data areas. We discussed the Class Loader subsystem, runtime data

areas such as the method area, stack area, and heap area, the execution engine,

and the garbage collector. Understanding the JVM architecture provides valuable

insights into how Java programs are executed, enabling developers to write

efficient and portable code.





02 Class Loading and Memory Management in JVM

Class Loading in JVM

Class loading is the process by which Java classes are loaded and initialized

within the Java Virtual Machine (JVM). When a Java program is executed, the

JVM loads the required classes into memory before they can be executed. Class

loading involves three main steps:

�� Loading: During this phase, the JVM searches for the binary representation (bytecode)

of a class and reads it into memory. The bytecode can be obtained from a local file

system, network, or any other source. At this stage, the JVM creates a unique runtime

representation of the class called a Class object.

�� Linking: This phase involves three sub-stages: verification, preparation, and resolution.

During verification, the JVM ensures that the loaded bytecode is valid and does not

violate any security constraints. The preparation phase allocates memory for static

variables and initializes them with default values. Resolution resolves symbolic

references to other classes or methods.

�� Initialization: This is the final phase where the JVM executes the static initializers (also

known as static blocks) in the class. Static initializers are used to initialize static variables

Class Loading and Memory
Management in JVM



and perform any additional setup required by the class. The initialization process is

performed automatically when the class is first used.

The class loading process is dynamic, allowing classes to be loaded and unloaded

during runtime, providing flexibility and dynamic behavior to Java programs.

Memory Management in JVM

Memory management in the JVM refers to the allocation, deallocation, and usage

of memory during the execution of a Java program. JVM's memory is divided into

different regions, namely the method area, heap, and stack.

�� Method Area: The method area stores class-level data, including the bytecode of loaded

classes, method code, constant pool, and static variables. Each loaded class has its own

runtime constant pool, which is a table of symbolic references used internally by the

runtime.

�� Heap: The heap is the runtime data area where objects and their instance variables are

allocated. Memory for objects is dynamically allocated on the heap, and the JVM

automatically reclaims memory from objects that are no longer referenced, through a

process known as garbage collection.

�� Stack: The stack is used for storing method-specific data and local variables. Each

thread in the JVM has its own stack, which stores temporary data during method

invocation and execution. The stack also keeps track of method calls, allowing for

method entry and exit.

The garbage collector, a critical component of memory management,

automatically identifies and reclaims memory from objects that are no longer

reachable, freeing up memory for future allocations. It follows different garbage

collection algorithms, such as mark-and-sweep, moving, or generational

collection, to efficiently manage memory.



Proper memory management ensures efficient utilization of resources, prevents

memory leaks, and enhances the overall performance of Java applications.



03 Execution Engine and Just-In-Time (JIT) Compilation in JVM

Introduction

The Java Virtual Machine (JVM) is a crucial component in executing Java

programs. It provides a platform-independent environment that allows Java code

to run on any operating system. Understanding the architecture of the JVM is

essential for Java developers to optimize their code and improve performance. In

this topic, we will delve into the Execution Engine and Just-In-Time (JIT)

Compilation in the JVM.

Execution Engine

The Execution Engine is the component responsible for executing bytecode

instructions generated by the Java compiler. It interprets these instructions and

produces the corresponding output. The Execution Engine consists of three main

Execution Engine and Just-In-
Time (JIT) Compilation in
JVM



sub-components: the Class Loader, the Runtime Data Areas, and the Execution

System.

Class Loader

The Class Loader is responsible for loading Java classes into the JVM. It locates

and reads the necessary class files from the file system or network, and then

creates the corresponding Java class representations in memory. There are three

types of Class Loaders in the JVM: Bootstrap Class Loader, Extensions Class

Loader, and Application Class Loader. Each Class Loader has its own class loading

hierarchy.

Runtime Data Areas

The Runtime Data Areas are the memory areas used by the JVM at runtime.

These areas include the Method Area, Heap, Java Virtual Machine Stacks, and the

PC Registers.

The Method Area stores class-level data, such as the runtime constant pool, field and

method data, and method code.

The Heap is where objects are dynamically allocated.

The Java Virtual Machine Stacks contain method frames that store local variables and

partial results.

The PC Registers store the address of the currently executing instruction.

Execution System



The Execution System is responsible for executing the bytecode instructions.

There are two execution modes: interpretation and Just-In-Time (JIT) Compilation.

Just-In-Time (JIT) Compilation

Just-In-Time (JIT) Compilation is a technique used by the JVM to improve the

performance of Java programs. In the JIT compilation process, the bytecode

instructions are dynamically compiled into native machine code before being

executed by the CPU. This allows the JVM to optimize the performance by

identifying and optimizing frequently executed code segments.

JIT Compilation Process

The JIT compilation process typically consists of three stages: interpretation,

profiling, and compilation.

�� Interpretation: Initially, the Execution Engine interprets the bytecode instructions one by

one, executing them sequentially. This allows the JVM to quickly start executing the

program without the need for compilation.

�� Profiling: During interpretation, the JVM collects profiling information about the program

execution. This includes identifying frequently executed methods, hot spots, and code

branches.

�� Compilation: Based on the profiling information, the JVM identifies hot methods or code

segments that would benefit from compilation. These methods are then compiled into

highly optimized native machine code. The compilation process may employ

optimizations such as constant folding, dead code elimination, and loop unrolling.

Tiered Compilation



Modern JVMs often use a technique called tiered compilation to balance between

interpreting and compiling code. In tiered compilation, the JVM uses multiple

levels or tiers of compilation to optimize the execution of the program gradually.

The first tier executes the program in interpreted mode to enable quick startup.

The second tier performs quick compilations on hot methods to improve performance.

The third tier performs more advanced and time-consuming optimizations on highly

critical methods.

Code Caching

To further improve performance, the JVM also employs code caching. This means

that the compiled native code is stored in memory for future use. By caching the

compiled code, the JVM avoids the overhead of repeated compilation for

frequently executed code segments.



04 Quiz

Question 1/6

What is the role of JVM in the execution of Java programs?

Converts Java bytecode to machine code

Allocates memory for Java objects

Provides a runtime environment to execute Java programs

Question 2/6

What is the first step in the JVM startup process?

Loading the Java classes

Creating the Java objects

Initializing the JVM

Quiz
Check your knowledge answering some questions



Question 3/6

Which part of the JVM is responsible for loading Java classes?

Garbage Collector

Class Loader

JIT Compiler

Question 4/6

What is the purpose of garbage collection in JVM?

To optimize the execution of Java programs

To reclaim memory occupied by unused Java objects

To convert Java bytecode to machine code

Question 5/6

Which component of the JVM converts Java bytecode to machine

code?

Class Loader

Execution Engine

Garbage Collector



Question 6/6

What is the purpose of Just-In-Time (JIT) compilation in JVM?

To allocate memory for Java objects

To improve the performance of Java programs

To load Java classes into memory

Submit



Conclusion

Congratulations!
Congratulations on completing this course! You have taken an important step in

unlocking your full potential. Completing this course is not just about acquiring

knowledge; it's about putting that knowledge into practice and making a positive

impact on the world around you.

Share this course

Created with LearningStudioAI

v0.5.72

https://learningstudioai.com/

